
Software agents in support of a taxi corporation
Mikolaj Leszczynski, Marcin Niedabylski,

Radoslaw Kutkowski, Maria Ganzha
Department of Mathematics and Information Sciences

Warsaw University of Technology
Warsaw, Poland

leszczynskim,niedabylskim,kutkowskir@student.mini.pw.edu.pl

Marcin Paprzycki
Department of Intelligent Systems

Systems Research Institute
Polish Academy of Sciences

Warsaw, Poland
Marcin.Paprzycki@ibspan.waw.pl

Abstract—Management of a fleet of cars for hire (e.g. taxis)
involves number of issues that should be solved to provide high
quality service to the customers, while keeping drivers “happy”.
In this paper we show how a software agent system can be used
to solve some of them and, potentially, improve both customer
service and driver experience. We discuss the design and im-
plementation of the system and illustrate (through a simulation)
how application of the system supports fleet management and
facilitates better driver workload balance / pay.

I. INTRODUCTION

Let us consider management of a fleet of cars for hire.
While, today, applications such as Uber [1] or Lyft [2] have
introduced novel approaches to facilitating car hiring, let us
focus on an old model of a taxi corporation. However, what
should be kept in mind is that a number of issues that are going
to be raised and addressed in what follows are applicable also
to: MyTaxi [3], Uber, Lyft as well as future models of car
hiring that will involve fleets of self-driving vehicles.

The oldest scenario of “acquiring a taxi” involves customers
calling a central (phone) number, where someone receives
details of an order and radio-broadcasts it to the drivers. The
driver, who responds first, “gets the order” and proceeds to
pick-up the passenger. Lack of ICT support results, among
others, in: (a) unknown wait time, (b) lack of support in the
case when the taxi, on the way to the customer, encountered
some problems, (c) lack of knowledge how many taxis are
already waiting for customers in a given area, (d) uneven
distribution of rides (income) between the drivers, etc.

Currently, in majority of countries, mobile technology has
been introduced to taxi corporations. As a result, customer has
multiple channels to request a taxi (phone-call, SMS, web,
etc.). Order is redirected to the drivers (often divided by the
city section) and displayed on a screen of mobile devices
(e.g. a smart phone or a phablet). Drivers can accept an order
by pressing a button on the screen (action, which potentially
redirects their focus from driving to the screen of the device).
Drivers also know how many taxis are already awaiting orders
in a given part of town. Often, drivers in a given region are
divided into queues, to which they can sign into (if they know
that they are going to that area). While a big improvement,
such systems still do not fully address issues like (a), (b) or
(d) above. Furthermore, they still require a lot of attention of
the driver (taking their attention away from the driving – thus

making it dangerous). Note also that, recently (May, 2016),
Lyft announced that it will add information about expected
wait time to their smartphone application (see, [4]).

Therefore, it would be nice to add functionality to the ICT-
system of the taxi company. Some of the objectives of an
“ultimate taxi corporation management system” may include
(but, surely, more goals can be realized through the proposed
solution): (1) Management of which taxi should pick-up which
passenger should be semi-automatic and use multi-criteria
analysis (including, among others, estimated time of arrival to
the client location, current earnings distribution, etc.). In this
way the driver would focus on driving, rather than on catching
the next order. (2) Dealing (semi-autonomously – minimizing
the involvement of the driver) with the cases when unforeseen
circumstances occur during passenger pick-up, or driving the
passenger to the destination (traffic jams, police controls, car
breaking, accidents, etc.). (3) Providing extra safety for the
drivers by informing that the car is not going to the established
location (which may mean that the taxi was hijacked – in
recent years, in Poland, there were multiple situations when
taxis were hijacked and drivers injured or killed). (4) Reducing
unnecessary disparities between payments of all drivers. While
this goal may seem somewhat controversial, we believe that its
realization could improve well-being of the whole corporation.
Therefore, we show that, using the proposed system (even
in its relatively simple form), this goal can be achieved (at
least to a certain extent). However, in real-life, its use is not
“mandatory”. (5) Dealing with the situation when the client is
“far away” and there are no drivers willing to go there. Here,
the trust in the fact that the system will (over time) equalize
earnings (and thus will make sure that the driver will not be
loosing money by picking such customer) may be of value.

It should be obvious by now that what is needed is a system
that involves autonomous entities representing drivers, allows
for negotiations, monitoring of the situation, re-negotiations
and/or re-scheduling in case of problems, etc. This seemed
like a perfect fit for an agent system (see, for instance [5],
[10]). Therefore, we have decided to design and implement
one to see if it can actually deal with main issues involved in
management of a taxi corporation.

The remaining parts of the paper are organized as follows.
First, we outline the design of the TaxiAgent system. This
includes the main use case scenarios. We follow with more



detailed description of the implemented system, while used
technologies are also briefly described. Next, it is shown
that the system actually works (it correctly deals with the
considered scenarios). Finally, we present initial results of
simulations focused on illustrating that the proposed system
can have positive effect on leveling income (workload) of
drivers.

II. DESIGNING THE TaxiAgent SYSTEM – GENERAL
CONSIDERATIONS

Let us now consider what are the main issues that the design
of the proposed TaxiAgent system should take into account.
As stated above, we have decided to realize it as an agent
system, in which a software agent will be “placed” in each
taxi. Here, it is worthy noting, that mobile devices placed in
taxis can be assumed to: (a) have an “uninterruptible” power
source, and (b) if needed, be connected to the Internet (either
directly, or through the GSM infrastructure). This removes
some restrictions that had to be considered, for instance, in
the glider pilot support system discussed in [7].

The second part of the system is going to be the central
“module”, which is going to possess complete knowledge
about the “state of the corporation”. This knowledge includes,
but is not limited to: (1) taxis that are currently “in operation”
(including their location, status – waiting, on the way to the
client, on the way with the client, direction where they are
going, estimated arrival time to the destination, earnings level
– for a given day, week, month, etc.), (2) orders – waiting
customers, their locations, time when they want a taxi to be
available, (3) taxis that are on a break, but are likely to “be
back” within limited time (possibly, expected time when a
given taxi will be back servicing customers).

The third part of the system is the client “interface.” Here, in
a real-world system multi-channel interface would be required.
As mentioned earlier, this should include, among others,
WWW site, SMS, phone, and smart phone application. For
the latter one, applications for Android and iOS should be
created. However, for the testing purposes, we ave decided to
develop only the Android-based user interface.

Let us now list scenarios that the proposed system should
be capable of dealing with.

Basic scenario: Here, a customer orders a taxi. Systems
establishes, which taxi should pick the customer (taking into
account positions of taxis that are in the area, or that will enter
the area shortly, possible arrival time, earnings distribution,
etc.). The selected taxi is confirmed and the client is informed
about pickup details (taxi number, car make, etc.). Order is
monitored until customer is delivered to its destination.

Taxi cannot reach customer on time: In this case, the agent
in the taxi informs the central system about nature of the
problem (break, traffic jam, police control, accident, etc.).
Note that, in this case, it is extremely likely that it will be
the driver that will have to initiate the “emergency action”
of the system. However, more complex scenarios, involving
autonomous actions of the system (that recognizes existence
of a problem), can also be envisioned. The central system finds

and confirms the replacement taxi, and informs the customer.
Next, basic scenario is resumed.

Taxi encounters problems when taking the customer to the
destination: Here, traffic jam is a problem that cannot be
solved. However, in case of other situations (e.g. taxi breaking,
police control resulting in an extended delay, accident, etc.) the
taxi agent arranges for another taxi to be sent to pick up the
customer (from the location where the “taxi with problems”
has stopped). Here, again, it is likely that the driver will initiate
this scenario, but more complex behaviors of the system are
also possible. After the new taxi picks the passenger, the basic
scenario resumes.

Taxi monitoring: Since the system knows where the taxi is
going, and where it is located, it is possible to monitor the
situation and instantiate actions in a situation when the taxi is
going in the “wrong direction”. However, this scenario is out
of scope of our current considerations.

Driver takes a break: Here, the taxi driver requests a
break. During that time taxi will be skipped in the process
of assigning clients. This functionality is useful in practice
(taxi needs to be filled with petrol, driver needs coffee / food
break, etc.). Since majority of drivers may want a break at
the same time (and that it happens during the time when high
demand for taxis materializes) the system should provide a
possibility to “cancel” driver’s break manually (by selecting
appropriate option in the central module). This decision should
be communicated to the driver, who should acknowledge
acceptance.

Load/earnings balancing: One of the aims of the proposed
system is to balance load, and thus driver earnings, across the
corporation. To achieve this goal the system should select the
“underutilized driver” to pick the next passenger, as long as
it is reasonable. In other words, if two (or more) drivers can
pick the customer within a given time, the one who earned
the least should be selected.

More detailed description of implemented scenarios is en-
closed in sections V and VI.

III. TAXIAGENT – DEFINING SYSTEM MODULES

Let us now look into some more details of the three, just
identified, main modules of the system. We will approach them
from the point of view of the identified key scenarios.

Taxi driver application: This application is instantiated on a
mobile device placed in a taxi (typically a separate – dedicated
– device, other than the smart phone of the driver). It offers
a map and a GPS navigation functions (delivered by the
TaxiRouteAgent). Besides navigation, the driver can use it to
report going on a break, road conditions (e.g. car break, traffic
jam, police control, etc.), as well as request another taxi to be
sent (see, above). An agent (called TaxiCommunicationAgent)
that is responsible for communication with the central module
is also a part of this application. Futhermore, each TaxiCom-
municationAgent has its own status: occupied/free/on break,
which is registered in the JADE’s Yellow Pages service (see
section IV). This tool provides an easy way to obtain a set
of TaxiCommunicationAgents with the same status. Note that



the geopositioning can be implemented as a separate module
within the TaxiAgent system (as done now). However, it could
also be integrated with exiting driver-support software. Both
approaches have advantages and disadvantages, but analyzing
them is out of scope of current contribution.

In Figure 1, we see a map displayed on taxi driver ap-
plication’s screen, when a client is assigned. Picture of a car
symbolizes current position of the taxi, icon of a human repre-
sents client’s localization, and a flag – the desired destination.

Fig. 1. Screen from taxi driver application with taxi’s and client’s position
and client’s destination marked

Central module: This core application works on a central
server (consisting of one or more machines, depending on
the size / needs of the company). Its main objectives are
(a) choose the most suitable taxi for a client (and the driver)
and (b) oversee that the order is completed. In order to achieve
this, an agent (called an AngelAgent) is created for each order
requesting a taxi. Every AngelAgent is responsible for one
client – it is launched when a new order appears, and it works
until client reaches her/his final destination. In case of an
emergency, it is the AngelAgent that is responsible for taking
all necessary steps to solve the problem. Besides the Ange-
lAgent, the central module consists of a ReceiveOrdersAgent
and a DBAgent. The ReceiveOrdersAgent receives orders from
clients and creates new AngelAgents for each one of them,
whereas the DBAgent is responsible for querying the database.
The central module enables also monitoring of work of all
elements of the system. Employees using the central module
are able to read logs (which contain information about taxis
and orders), manage negotiations when end of break(s) is
needed, and add new taxi drivers to the system database.

Client application: This is an application, which is instan-
tiated on a mobile device. It allows user to choose both,
the start and the end location, and also the expected time
of taxi’s arrival. The location can be chosen by one of the

following methods: (a) by using the current GPS position,
(b) by selecting point on the map, or (c) by typing the address
into the application. When a taxi is requested,ClientAgent
sends message to central module and the order is farther
processed. Next, customer receives information about expected
time of arrival and can track the taxi on the map.

Emulator: During the process of implementation of the
TaxiAgent system, an obvious need for testing the system
arose. Thus far, it was impossible to try the system in the
real-world, and thus the emulator module was created. This is
a server application with a simple design. The emulator can
generate clients, taxis and can simulate all scenarios described
in section II except Taxi monitoring.

Map module: It is a website, which (as the emulator) was
created to support testing of the system. All taxis and clients
are displayed on the Google map. Whenever one of them
changes location, the corresponding marker is moved. It is also
possible to obtain more information about taxis and clients, for
example: earnings, GPS location, status of the taxi (on break,
occupied, free), start/end position of the client.

IV. TaxiAgent SYSTEM – USED TECHNOLOGIES

To achieve the requred functionalities we decided to use
JADE (Java Agent Development Framework, see [8]), a multi-
agent platform created by the Telecom Italia Lab. It provides
agent abstraction, asynchronous communication, task execu-
tion and a Yellow Pages service. Furthermore, JADE is still
being developed (version 4.4.0 released on 23.12.2015 was
used for the implementation of the system reported here).
Other technologies used in implementation were: (a) An-
droid 4.0 for mobile applications, (b) Microsoft SQL Server,
(c) GoogleMaps, (d) ASP.NET – only in the Map module.
Note that iOS support is one of future objectives.

Android applications were equipped with the JADE plat-
form, in order to communicate with the central module. How-
ever, due to issues with string conversion between different
platforms (PC and Android) it was necessary to serialize
messages’ content to the JSON format.

Finally, the TaxiRouteAgent uses queries to GoogleMaps to
obtain the best possible route.

V. CHECKING CORRECTNESS OF REALIZATION OF
PROPOSED SCENARIOS

Let us now check if the implemented system works for the
scenarios described in Section II.

A. Basic scenario

The messages exchange that should take place in the basic
scenario, depicted as a sequence diagram, is shown in Figure 2.

Specifically, the process presented there consists of the
following messages sent by participating agents (we assume
that, at the start of the process, the taxi driver application is
being turned on).

• During authentication of the taxi in the system, the
TaxiCommunicationAgent sends message of type Request
to the DBAgent. It contains a password provided by a taxi



Fig. 2. Communication diagram – basic scenario

driver. The DBAgent checks if the password is correct and
sends back message of type Confirm. Then, the driver
starts working.

• Since the beginning of work, the TaxiCommunicationA-
gent, cyclically, sends messages of type Inform, which
enclose taxi’s location. The DBAgent writes this informa-
tion into the database. In this way the system is aware of
position of every taxi. Decision how often such message
is to be sent is one of the parameters of the system.

• When a clients orders a taxi, the ClientAgent sends, to the
ReceiveOrdersAgent, a Request message, which includes
coordinates of the client and the specified destination.
Then, the ReceiveOrdersAgent, creates a new AngelAgent
and passes to it data sent by the client. Next, the Receive-
OrdersAgent, sends an Inform message to the DBAgent,
which contains client’s localization and destination.

• The AngelAgent checks the Yellow Pages service (pro-
vided by JADE), which taxi drivers are free and then
sends a Request to all of them. The TaxiCommunication-
Agents respond with an Inform message, which contains
information about expected time to arrive to the client. In
the future, it is planned to use more complex method of
choosing taxis by the AngelAgent (e.g. checking occupied
taxis, which are heading near client’s location). However,
it is out of scope of the system discussed here.

• The AngelAgent sends to the selected taxi the Propose
message, which is an offer to fulfill the client’s or-
der. If the TaxiCommunicationAgent responds with the
Accept proposal message, the AngelAgent informs the
ClientAgent about the estimated time of waiting for the
taxi and the estimated cost.

Let us now illustrate how this scenario is realized when the

system is running. To do this we have used the, JADE pro-
vided, SnifferAgent, which registers all messages exchanged
between selected agents. The registered messages, from a
sample run, are presented in Figure 3.

Fig. 3. Sniffer agent – basic scenario

It is easy to see that the message exchange pattern follows
that, which was depicted in Figure 2. From this, and from a
number of experiments that we have run, we can state that the
system is capable of successfully realizing the basic scenario.

Taxi cannot reach customer on time
When a taxi cannot arrive to the client, (in the current

version of the application) the driver presses the button on the
screen, which invokes the TaxiCommunicationAgent to solve
the problem. It informs the AngelAgent (assigned to this ride),
about the need to find a replacement taxi. To avoid the situation
when client would have to wait an extended period of time for
a (replacement) taxi, the AngelAgent increases the “priority”
of such customer. As a result the system will serve this client
in the first place.

In Figure 4, a map-based screen-shot representing this sce-
nario has been shown. Here, the broken-down taxi is marked
in the circle, the waiting client is represented by a triangle.
Finally, in a rectangle there is another, unoccupied taxi. In
the Figure 5 further development of this situation may be
observed. As it could be predicted, the AngelAgent selected
the “taxi in the rectangle,” and this taxi is now on the way to
pick up the client.

Taxi encounters problems when driving customer to its
destination: Similarly to the previous scenario, in this situation
driver also informs the AngelAgent about the problem. Then it
is responsibility of the AngelAgent to find new taxi, which will
pick up the customer from place, where breakdown happened.

Again, to check how this scenario is realized we used the
SnifferAgent. The registered messages, from a moment of
sending a message to AngelAgent by TaxiCommunicationAgent
are shown in Figure 3.

VI. WORKLOAD / PAY BALANCING

As stated above, an additional feature of the proposed
system is to facilitate a “fair distribution” of income between



Fig. 4. Taxi cannot reach customer on time – beginning

Fig. 5. Taxi cannot reach customer on time – development

drivers. While one can envision multiple approaches, of vary-
ing complexity, to reach this goal, we have decided to check
ifthe agent system, described here, is capable of achieving it.
Therefore, we have implemented the following algorithm.

1) Upon its creation, to oversee the order, the AngelAgent
collects information from all unoccupied taxi drivers,
about their predicted time of arrival to the client. List of
free taxis is obtained from the Yellow Page service.

2) Then, it sends a query to the DBAgent, which provides

Fig. 6. Sniffer agent – basic scenario

information how much money each driver earned that
day. Here, we assume that the money earned is propor-
tional to the time that a given driver is already working.
Obviously, a more complex approach is possible (in
order to provide an even better balance of work-time,
payment, distance driven, etc.).

3) If only one driver can reach the client in time, then it is
chosen. However, if multiple taxis have an “acceptable
arrival time”, then the taxi with smallest income during
that day is being chosen by the AngelAgent.

Separately, we have considered situation of a client with an
“unfavorable location” (e.g. suburbs). Such client could have
to wait for a long time, or even will never be served, if all taxis
were serving customers in a “central location”. To deal with
this situation, each client has an assigned priority. Initially, it is
equal to one, but it increases in one of these cases: (a) if there
is no free taxi, able to serve the client, (b) if the AngelAgent
of that client chooses a taxi, but the taxi refuses the offer,
(c) if the taxi does not reach the client due to some event (see,
Section V). Here, a taxi is able to reject AngelAgent’s proposal,
if in 10 seconds after receiving the first offer, an AngelAgent
with higher priority of the contract, will ask the taxi to serve
its client. Specifically, let us assume that the driver’s TaxiAgent
receives an offer from the AngelAgent. When this offer comes
to the taxi, the TaxiAgent will wait for 10 seconds for offers,
which have higher priority.

Recall that, in our approach, these two situations have to
be combined with each other. Driver is more willing to go
and pick up a passenger “away” if (s)he knows that the pay
balancing system will help recover the lost time / income.

A. Pay balancing tests

To test our approach to pay balancing, two experiments
were conducted. In the first, five hundred clients were created
at random locations. Then, ten taxis were added, all in the
same region. The goal of the test was to simulate work of the
corporation as long as all clients would have been served. In
Figure 7 and Figure 8 we depict incomes of taxi drivers with
and without pay-balancing schema.

Fig. 7. Results of the first experiment without the income criterion

Here, the overall number of clients was much higher than
the number of taxis. This resulted in the situation, where a taxi
never has to wait for a new client. Specifically, when (in the
early stage of the process) a taxi lost negotiations for a client, it
(almost) immediately got involved in obtaining the next client.



Fig. 8. Results of the first experiment with the income criterion

As the process continued, there was only one taxi left so it
had to “win negotiations” and receive an order. Furthermore,
as the taxi delivered the client to the destination, there were
subsequent clients waiting to be served. Comparing the results
in the two figures leads to a simple conclusion. When the
number of taxis highly exceeds the number of clients, every
driver earns similar amount of money – regardless of the used
criterion for selecting the taxi.

In the second experiment we have been adding clients in
a cyclic way. A new set of clients was created right after
customers from previous groups were served. An important
condition was to, each time, create a smaller number of clients
than the total number of currently available taxis. Specifically,
we have instantiated ten taxis and, in every iteration, seven new
clients were added in random locations on the map. The test
finished after fifteen iterations, which resulted in one hundred
and five clients served. In Figure 9 and Figure 10 results of
the experiment are shown.

Fig. 9. Results of the second experiment without the income criterion

Fig. 10. Results of the second experiment with the income criterion

In the second experiment, where the number of taxi drivers
was (constantly) greater than number of clients, winning
negotiations was crucial to earn money. Here, without using

the income criterion, the taxi which was the nearest to the
client was winning the negotiations. As a result some drivers
served more clients than other drivers and earned substantially
more money. In the second case, with the income criterion, all
drivers served a similar number of clients and their income was
relatively similar. Note that similar results have been observed
also in other tests run for this scenario.

VII. CONCLUDING REMARKS

In this paper, we have presented a multi-agent system that
supports a TAXI corporation. The system has been imple-
mented and tested and could be installed in an actual company.
The presented solutions consists of two mobile applications
– one for the driver and one for the client, a database and a
server application. The server application architecture allows
it to be placed on multiple computers at the same time,
leading to potential performance improvement for large-scale
usage. The server intermediates between the taxi driver and
the system, receives orders from the clients and creates a new
agent for every client. During the implementation, we have
also created a website with a map and an emulating module
that was used to test performance, the behavior of agents and
the implement scenarios. In the proposed solution, we have
included real life scenarios like taxi breakdown and taxi driver
coffee-break. Furthermore, it was shown that the proposed
multi-agent system, using a relatively simple workload
balancing schema, may assign taxis to clients in such a way
that every driver will earn similar amount of money, which
could help companies to distribute income fairly. Obviously,
the simplistic approach could be replaced by a more complex
one, and larger scale tests run. The system is designed in such
a way that the process of implementing the new features (i.e.
fuel cost optimization, two-step planning, or driver rating) is
simple, making its usage for the future promising.

REFERENCES

[1] www.uber.com
[2] www.lyft.com
[3] www.mytaxi.com
[4] http://9to5mac.com/2016/05/23/ride-sharing-service-lyft-testing-

scheduled-pickups-from-mobile-app/
[5] Perugini, D., et al. Agents in Logistics Planning-Experiences with the

Coalition Agents Experiment Project. In Proceedings of workshop at
the Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2003). Melburne, Australia, July 2003

[6] Zhu, K., A. Bos. Agent-based design of intermodal freight transportation
systems. NECTAR Conference, Delft, 1999.

[7] A. Gab, P. Andreou, M. Ganzha, M. Paprzycki, GliderAgent a proposal
for an agent-based glider pilot support system. In: Proceedings of the
15th International Conference on Methods and Models in Automation
and Robotics (MMAR), IEEE Press, 2010, 55-60

[8] www.jade.tilab.com
[9] J. M. Salanova Grau, M. A. Estrada Romeu, Agent based modelling for

simulating taxi services
[10] L. M. Martinez, G. H. A. Correia, J. M. Viegas. An agent-based

simulation model to assess the impacts of introducing a shared-taxi
system: an application to Lisbon (Portugal)

[11] J. M. Salanova Grau, Taxi services modeling for decision making support
[12] A. Glaschenko, A. Ivaschenko, G. Rzevski, P. Skobelev, Multi-Agent

Real Time Scheduling System for Taxi Companies


